Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 12: e16708, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715984

RESUMEN

The present work aimed at differentiating five Amaranthus species from Saudi Arabia according to their morphology and the ability in nanoparticle formulation. Biogenic silver nanoparticles (AgNPs) were synthesized from leaf extracts of the five Amaranthus species and characterized by different techniques. Fourier-transform infrared spectroscopy (FT-IR) was used to identify the phyto-constituents of Amaranthus species. The nanoparticles (NPs) were characterized by UV-visible spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The antibacterial activity of the synthesized NPs was tested against Staphylococcus aureus, E. coli, Klebsiella pneumoniae and Pseudomonas aeruginosa using the agar well diffusion method. Spherical NPs varying in size and functional groups from the five plant species were demonstrated by TEM, DLS and FTIR analysis, respectively. Variations in NPs characteristics could be related to the phytochemical composition of each Amaranthus species since they play a significant role in the reduction process. EDX confirmed the presence of Ag in plant fabricated AgNPs. Antibacterial activity varied among the species, possibly related to the NPs characteristics. Varied characteristics for the obtained AgNPs may reflect variations in the phytochemical composition type and concentration among Amaranthus species used for their fabrication.


Asunto(s)
Amaranthus , Antibacterianos , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Plata , Amaranthus/química , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Espectroscopía Infrarroja por Transformada de Fourier , Humanos , Pseudomonas aeruginosa/efectos de los fármacos , Hojas de la Planta/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Microscopía Electrónica de Transmisión , Arabia Saudita , Bacterias/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos
2.
Sci Rep ; 14(1): 7202, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531974

RESUMEN

Cancer is responsible for approximately 10 million deaths worldwide, with 70% of the deaths occurring in low- and middle-income countries; as such safer and more effective anti-cancer drugs are required. Therefore, the potential benefits of Ziziphus nummularia and Ziziphus spina-christi as sources of anti-cancer agents were investigated. Z. nummularia and Z. spina-christi extracts were prepared using chloroform, ethanol, ethyl acetate, and water. The extracts' anti-cancer properties were determined using the MTT Cell Viability Assay in four cancer cell lines: breast (KAIMRC2 and MDA-MB-231), colorectal (HCT8), and liver (HepG2). The ApoTox-Glo Triplex Assay and high-content imaging (HCI)-Apoptosis Assay were used to assess KAIMRC2 and HCT8 cells further. In addition, KAIMRC2 cells were tested for microtubule staining, and AKT/mTOR protein expression was determined by western blot analysis. Liquid chromatography-mass spectrometry (LC-MS) was performed to identify the secondary metabolites in the ethanol and ethyl acetate extracts, followed by in silico techniques to predict molecular targets and interactions, safety, and pharmacokinetic profile for identified metabolites. Out of the eight extracts, the ethanolic extract of Z. nummularia, exhibited the most potent activity against KAIMRC2 cells with an IC50 value of 29.2 µg/ml. Cancer cell treatment with the ethanolic extract of Z. nummularia resulted in a dose-dependent decrease in cell viability with increased apoptosis and cytotoxic effects. Microtubule staining showed a disrupted microtubular network. The ethanolic extract treatment of KAIMRC2 cells led to upregulated expression of pAKT and pmTOR. In silico studies predicted luteolin-7-O-glucoside to be a ligand for tubulin with the highest docking score (- 7.686) and similar binding interactions relative to the native ligand. Further computational analysis of the metabolites showed acceptable pharmacokinetic and safety profiles, although ethanolic extract metabolites were predicted to have cardiotoxic effects. Ethanolic extraction is optimal for solubilizing active anticancer metabolites from Z. nummularia, which may act by causing M-phase arrest via inhibition of tubulin polymerization. Luteolin-7-O-glucoside is the lead candidate for further research and development as an anti-cancer agent. In addition, this study suggests that herbal treatment could switch on mechanisms of adaptation and survival in cancer cells.


Asunto(s)
Acetatos , Glucósidos , Luteolina , Neoplasias , Ziziphus , Extractos Vegetales/farmacología , Ziziphus/química , Moduladores de Tubulina , Ligandos , Tubulina (Proteína) , Etanol
3.
PeerJ ; 12: e17023, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440409

RESUMEN

Adansonia digitata L. is a royal tree that is highly valued in Africa for its medicinal and nutritional properties. The objective of this study was to use its fruit shell extract to develop new, powerful mono and bimetallic nanoparticles (NPs) and biochar (BC) using an eco-friendly approach. Silver (Ag), iron oxide (FeO), the bimetallic Ag-FeO NPs, as well as (BC) were fabricated by A. digitata fruit shell extract through a reduction process and biomass pyrolysis, respectively, and their activity against tomato pathogenic fungi Alternaria sp., Sclerotinia sclerotiorum, Fusarium equiseti, and Fusarium venenatum were detected by agar dilution method. The Ag, FeO, Ag-FeONPs, and BC were characterized using a range of powerful analytical techniques such as ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier Transform-Infra Red (FT-IR), dynamic light scatter (DLS), and zeta potential analysis. The fabricated Ag, FeO and Ag-FeO NPs have demonstrated a remarkable level of effectiveness in combating fungal strains. UV-Vis spectra ofAg, FeO, Ag-FeONPs, and BC show broad exhibits peaks at 338, 352, 418, and 480 nm, respectively. The monometallic, bimetallic NPs, and biochar have indicated the presence in various forms mostly in Spherical-shaped. Their size varied from 102.3 to 183.5 nm and the corresponding FTIR spectra suggested that the specific organic functional groups from the plant extract played a significant role in the bio-reduction process. Ag and Ag-FeO NPs exhibited excellent antifungal activity against pathogenic fungi Alternaria sp., S. sclerotiorum, F. equiseti, and F. venenatum. The current study could be a significant achievement in the field of antifungal agents since has the potential to develop new approaches for treating fungal infections.


Asunto(s)
Adansonia , Carbón Orgánico , Solanum lycopersicum , Espectroscopía Infrarroja por Transformada de Fourier , Antifúngicos/farmacología , Alternaria , Rayos Infrarrojos , Extractos Vegetales
4.
Sci Rep ; 14(1): 4162, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378923

RESUMEN

Applying extracts from plants is considered a safe approach in biomedicine and bio-nanotechnology. The present report is considered the first study that evaluated the seeds of Lasiurus scindicus and Panicum turgidum as biogenic agents in the synthesis of silver nanoparticles (AgNPs) which had bioactivity against cancer cells and bacteria. Assessment of NPs activity against varied cell lines (colorectal cancer HCT116 and breast cancer MDA MBA 231 and MCF 10A used as control) was performed beside the antibacterial efficiency. Different techniques (DLS, TEM, EDX and FTIR) were applied to characterize the biosynthesized AgNPs. The phytochemicals from both L. scindicus and Panicum turgidum were identified by GC-MS analysis. Spherical monodisperse NPs at average diameters of 149.6 and 100.4 nm were obtained from seed extract of L. scindicus (L-AgNPs) and P. turgidum, (P-AgNPs) respectively. A strong absorption peak at 3 keV is observed by the EDX spectrum in the tested NPs. Our study provided effective NPs in mitigating the tested cell lines and the lowest IC50 were 7.8 and 10.30 for MDA MB231 treated by L-AgNPs and P-AgNPs, respectively. Both fabricated NPs might differentially target the MDA MB231 cells compared to HCT116 and MCF10A. Ultrastructural changes and damage for the NPs-treated MDA MB231 cells were studied using TEM and LSM analysis. Antibacterial activity was also observed. About 200 compounds were identified in L. scindicus and P. turgidum by GC-MS analysis might be responsible for the NPs reduction and capping abilities. Efficient NPs against cancer cells and microbes were obtained, however large-scale screening is needed to validate our findings.


Asunto(s)
Nanopartículas del Metal , Panicum , Plata/química , Panicum/metabolismo , Nanopartículas del Metal/química , Extractos Vegetales/química , Antibacterianos/química , Semillas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
5.
Int J Biol Macromol ; 254(Pt 3): 127900, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37931863

RESUMEN

Enzyme immobilization on solid support offers advantages over free enzymes by overcoming characteristic limitations. To synthesize new stable and hyperactive nano-biocatalysts (co-precipitation method), ginger peroxidase (GP) was surface immobilized (adsorption) on ZnO/SnO2 and ZnO/SnO2/SA nanocomposite with immobilization efficacy of 94 % and 99 %, respectively. Thereafter, catalytic and biochemical characteristics of free and immobilized GP were investigated by deploying various techniques, i.e., FTIR, PXRD, SEM, and PL. Diffraction peaks emerged at 2θ values of 26°, 33°, 37°, 51°, 31°, 34°, 36°, 56°, indicating the formation of SnO2 and ZnO. The OH stretching of the H2O molecules was attributed to broad peaks between 3200 and 3500 cm-1, whereas ZnO/SnO2 spikes occurred in the 1626-1637 cm-1 range. SnO stretching mode and ZnO terminal vibrational patterns have been verified at corresponding wavelengths of 625 cm-1 and 560 cm-1. Enzyme entrapment onto substrate was verified via interactions between GP and ZnO/SnO2/SA as corroborated by signals beneath 1100 cm-1. GP-immobilized fractions were optimally active at pH 5, 50 °C, and retained maximum activity after storage of 4 weeks at -4 °C. Kinetic parameters were determined by using a Lineweaver-Burk plot and Vmax for free GP, ZnO/SnO2/GP and ZnO/SnO2/SA/GP with guaiacol as a substrate, were found to be 322.58, 49.01 and 11.45 (µM/min) respectively. A decrease in values of Vmax and KM indicates strong adsorption of peroxidase on support and maximum affinity between nano support and enzyme, respectively. For environmental remediation, free ginger peroxidase (GP), ZnO/SnO2/GP and ZnO/SnO2/SA/GP fractions effectively eradicated highly intricate dye. Multiple scavengers had a significant impact on the depletion of the dye. In conclusion, ZnO/SnO2 and ZnO/SnO2/SA nanostructures comprise an ecologically acceptable and intriguing carrier for enzyme immobilization.


Asunto(s)
Nanocompuestos , Óxido de Zinc , Peroxidasa/química , Óxido de Zinc/química , Alginatos/química , Nanocompuestos/química , Peroxidasas , Enzimas Inmovilizadas/química , Agua
6.
Plant Physiol Biochem ; 205: 108148, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977026

RESUMEN

Contamination of agricultural fields with bismuth (Bi) reduces crop yield and quality. Arbuscular mycorrhizal fungi (AMF) are known to enhance plant growth and crop production, even under stressful conditions such as soil contamination with heavy metals. The objective of this study was to investigate the effect of AMF on the mitigation of Bi-phytotoxicity in wheat (Triticum aestivum) and beans (Phaseolus vulgaris) and to provide a comprehensive evaluation of the physiological and biochemical basis for the growth and development of AMF-induced plants under Bi stress conditions. Wheat and bean were treated by Bi and AMF individually and in combination. Then the physiological and biochemical responses in the shoot and roots of the two crop species were studied. Evident retardations in plant growth and key photosynthesis-related parameters and accumulation of MDA, H2O2, as markers of oxidative stress, were observed in plants subjected to Bi. AMF colonization reduced the uptake and translocation of Bi in the plant organs by enhancing the exudation of polyphenols and organic acids into the rhizospheric soil. Mycorrhized wheat and bean plants were able to attenuate the effects of Bi by improving metal detoxification (phytochelatins, metallothionein, total glutathione, and glutathione-S-transferase activity) and antioxidant defense systems (both enzymatic and non-enzymatic) and maintaining C assimilation and nutrient status. The current results suggest the manipulation of AMF as a powerful approach to alleviate the phytotoxicity of Bi in legumes and grasses.


Asunto(s)
Fabaceae , Micorrizas , Contaminantes del Suelo , Antioxidantes/farmacología , Triticum , Bismuto/farmacología , Peróxido de Hidrógeno/farmacología , Micorrizas/fisiología , Raíces de Plantas , Glutatión/farmacología , Suelo , Contaminantes del Suelo/toxicidad
7.
Saudi Pharm J ; 31(11): 101794, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37822695

RESUMEN

Introduction: The adverse effects of clinically used anti-cancer medication and the rise in resistive micro-organisms have limited therapeutic options. Multiple anti-cancer drugs are derived from medicinal herbs which also have shown anti-bacterial effects. This study aimed to identify the optimal extraction solvent for detecting the cytotoxic and anti-bacterial effects of Calligonum comosum (C. Comosum) and Rumex vesicarius (R. Vesicarius) extracts. Additionally, the study aimed to identify active metabolites and assess their potential as future drug candidates for anti-cancer and anti-bacterial therapeutics. Methods: Leaves from both plants were extracted using ethanol, ethyl acetate, chloroform, and water. The cytotoxic effects of the extracts were tested on liver, colon, and breast cancer cell lines. Apoptosis was assessed using High Content Imaging (HCI) and the ApoTox triplex Glo assay. The anti-bacterial effects were determined using agar-well diffusion. Liquid chromatography-mass spectrometry (LC-MS) was used to tentatively identify the secondary metabolites. In silico computational studies were conducted to determine the metabolites' mode of action, safety, and pharmacokinetic properties. Results: The ethanolic extract of C. Comosum exhibited potent cytotoxicity on breast cancer cell lines, with IC50 values of 54.97 µg/mL and 58 µg/mL for KAIMRC2 and MDA-MB-231, respectively. It also induced apoptosis in colon and breast cancer cell lines. All tested extracts of C. Comosum and R. Vesicarius demonstrated anti-bacterial activity against Staphylococcus aureus and Escherichia coli. Seven active metabolites were identified, one of which is Kaempferol 3-O-Glucoside-7-O-Rhamnoside, which showed strong (predicted) anti-cancer activity. Kaempferol 3-O-Glucoside-7-O-Rhamnoside and Quercetin-3-O-Glucuronide also exhibited potential anti-bacterial effects on gram-positive and negative bacteria. Conclusion: Ethanol extraction of C. Comosum solubilizes active metabolites with potential therapeutic applications in cancer treatment and bacterial infections. Kaempferol 3-O-Glucoside-7-O-Rhamnoside, in particular, shows promise as a dual therapeutic drug candidate for further research and development to improve its efficacy, safety, and pharmacokinetic profile.

8.
Int J Biol Macromol ; 252: 126434, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37604417

RESUMEN

Despite the wide utilization of chitosan nanoparticles (CSNPs) as a promising approach for sustainable agriculture, their efficiency under elevated CO2 (eCO2), has not been evaluated. The interactive effects of CSNPs and eCO2 were evaluated on the growth and C and N metabolism of soybean plants. Plants were treated with CSNPs and grown under ambient CO2 (410 ppm, aCO2) or eCO2 (645 ppm). Regardless of CO2 level, CSNPs improved the net photosynthetic rate. CSNPs aggravated the effect of eCO2 treatment on the levels of non-structural carbohydrates (i.e., glucose, fructose, sucrose, and starch), especially in shoots, which was inconsistence with the upregulation of carbohydrates metabolizing enzymes. Being the most pivotal energetic and signaling organic compounds in higher plants, the synergistic action of CSNPs and eCO2 on the accumulation of soluble sugars upregulated the N metabolism as indicated by induced activities of nitrate reductase, arginase, glutamate dehydrogenase, glutamine synthetase, and glutamine oxoglutarate aminotransferase which was manifested finally as increased shoot and root total nitrogen content as well as proline and aspartate in roots. At the hormonal level, the coexistence of eCO2 with CSNPs further supports their positive impact on the contents of IAA and, to a lesser extent, GAs. The present data prove that the biofertilization capacity of CSNPs is even more potent under futuristic eCO2 levels and could even further improve the growth and resilience of plants.


Asunto(s)
Quitosano , Nanopartículas , Dióxido de Carbono/metabolismo , Glycine max/metabolismo , Quitosano/farmacología , Quitosano/metabolismo , Fotosíntesis
9.
Int J Nanomedicine ; 18: 2141-2162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37131545

RESUMEN

Introduction: Biogenic silver nanoparticles (AgNPs) may be a feasible therapeutic option in the research and development towards selectively targeting specific cancers and microbial infections, lending a role in precision medicine. In-silico methods are a viable strategy to aid in drug discovery by identifying lead plant bioactive molecules for further wet lab and animal experiments. Methods: Green synthesis of M-AgNPs was performed using the aqueous extract from the Malvaviscus arboreus leaves, characterized using UV spectroscopy, FTIR, TEM, DLS, and EDS. In addition, Ampicillin conjugated M-AgNPs were also synthesized. The cytotoxic potential of the M-AgNPs was evaluated using the MTT assay on MDA-MB 231, MCF10A, and HCT116 cancer cell lines. The antimicrobial effects were determined using the agar well diffusion assay on methicillin-resistant S. aureus (MRSA) and S. mutans, E. coli, and Klebsiella pneumoniae. Additionally, LC-MS was used to identify the phytometabolites, and in silico techniques were applied to determine the pharmacodynamic and pharmacokinetic profiles of the identified metabolites. Results: Spherical M-AgNPs were successfully biosynthesized with a mean diameter of 21.8 nm and were active on all tested bacteria. Conjugation with ampicillin increased the susceptibility of the bacteria. These antibacterial effects were most predominant in Staphylococcus aureus (p < 0.0001). M-AgNPs had potent cytotoxic activity against the colon cancer cell line (IC50=29.5 µg/mL). In addition, four secondary metabolites were identified, Astragalin, 4-hydroxyphenyl acetic acid, Caffeic acid, and Vernolic acid. In silico studies identified Astragalin as the most active antibacterial and anti-cancer metabolite, binding strongly to the carbonic anhydrase IX enzyme with a comparatively higher number of residual interactions. Discussion: Synthesis of green AgNPs presents a new opportunity in the field of precision medicine, the concept centered on the biochemical properties and biological effects of the functional groups present in the plant metabolites used for reduction and capping. M-AgNPs may be useful in treating colon carcinoma and MRSA infections. Astragalin appears to be the optimal and safe lead for further anti-cancer and anti-microbial drug development.


Asunto(s)
Neoplasias del Colon , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Animales , Medicina de Precisión , Plata/farmacología , Escherichia coli , Ampicilina , Antibacterianos/farmacología , Bacterias , Extractos Vegetales/farmacología , Pruebas de Sensibilidad Microbiana
10.
ACS Omega ; 8(14): 12980-12991, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37065043

RESUMEN

The increasing trend in the rise of antibiotic-resistant bacteria pushes research to discover new efficacious antibacterial agents from natural and synthetic sources. Porphyromonas gingivalis is a well-known bacterium commonly known for causing periodontal disease, and it is associated with the pathogenesis of life-changing systemic conditions such as Alzheimer's. Proteomic research can be utilized to test new antibacterial drugs and understand the adaptive resistive mechanisms of bacteria; hence, it is important in the drug discovery process. The current study focuses on identifying the antibacterial effects of Juglans regia (JR) and Melaleuca alternifolia (MA) on P. gingivalis and uses proteomics to identify modes of action while exploring its adaptive mechanisms. JR and MA extracts were tested for antibacterial efficacy using the agar well diffusion assay. A proteomic study was conducted identifying upregulated and downregulated proteins compared to control by 2D-DIGE analysis, and proteins were identified using MADLI-TOF/MS. The bacterial inhibition for JR was 20.14 ± 0.2, and that for MA was 19.72 ± 0.5 mm. Out of 88 differentially expressed proteins, there were 17 common differentially expressed proteins: 10 were upregulated and 7 were downregulated in both treatments. Among the upregulated proteins were Arginine-tRNA ligase, ATP-dependent Clp protease proteolytic, and flavodoxins. In contrast, down-regulated proteins were ATP synthase subunit alpha and quinone, among others, which are known antibacterial targets. STRING analysis indicated a strong network of interactions between differentially expressed proteins, mainly involved in protein translation, post-translational modification, energy production, metabolic pathways, and protein repair and degradation. Both extracts were equi-efficacious at inhibiting P. gingivalis and displayed some overlapping proteomic profiles. However, the MR extract had a greater fold change in its profile than the JA extract. Downregulated proteins indicated similarity in the mode of action, and upregulated proteins appear to be related to adaptive mechanisms important in promoting repair, growth, survival, virulence, and resistance. Hence, both extracts may be useful in preventing P. gingivalis-associated conditions. Furthermore, our results may be helpful to researchers in identifying new antibiotics which may offset these mechanisms of resistance.

11.
Front Plant Sci ; 14: 1019859, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36959941

RESUMEN

Rice is a highly valuable crop consumed all over the world. Soil pollution, more specifically chromium (Cr), decreases rice yield and quality. Future climate CO2 (eCO2) is known to affect the growth and yield of crops as well as the quality parameters associated with human health. However, the detailed physiological and biochemical responses induced by Cr in rice grains produced under eCO2 have not been deeply studied. Cr (200 and 400 mg Cr6+/Kg soil) inhibited rice yield and photosynthesis in Sakha 106, but to less extend in Giza 181 rice cultivar. Elevated CO2 reduced Cr accumulation and, consequently, recovered the negative impact of the higher Cr dose, mainly in Sakha 106. This could be explained by improved photosynthesis which was consistent with increased carbohydrate level and metabolism (starch synthases and amylase). Moreover, these increases provided a route for the biosynthesis of organic, amino and fatty acids. At grain quality level, eCO2 differentially mitigated Cr stress-induced reductions in minerals (e.g., P, Mg and Ca), proteins (prolamin, globulin, albumin, glutelin), unsaturated fatty acids (e.g., C20:2 and C24:1) and antioxidants (phenolics and total antioxidant capacity) in both cultivars. This study provided insights into the physiological and biochemical bases of eCO2-induced grain yield and quality of Cr-stressed rice.

12.
Biotechnol Genet Eng Rev ; : 1-14, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36852923

RESUMEN

Microorganisms produce secondary metabolites to survive under stressful conditions. The effect of drought and heat stress on fungi isolated from Arabian desert soil during the hot (ca 40°C) and cool (ca 10°C) seasons was studied using the genome mining approach. The presence of three stress-related genes (calmodulin, polyketide synthase and beta tubulin) was analyzed molecularly using specific primers. The presence of the genes in desert fungi was compared to their antimicrobial (ten bacterial or fungal pathogens) and anticancer (liver, cervical and breast) properties and the production of thermostable enzymes (phytase and xylanase). The genes appeared to be present in the fungal sequence obtained during the summer, while none of the genes were present during winter. Appreciable differences were observed in enzyme activities, with summer activities high and winter low. The antagonistic activities of A. niger were relatively stable and varying, while those of P. chrysogenum were consistently higher in summer than in winter. The presence of the three genes seemed to correlate with the highly antagonistic activities of P. chrysogenum, while A. niger had relatively active winter isolates without any of the genes. The hot season in deserts yields fungal isolates with biological activities useful in biotechnological solutions.

13.
Sci Total Environ ; 873: 162295, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801323

RESUMEN

Arsenic (As) is a group-1 carcinogenic metalloid that threatens global food safety and security, primarily via its phytotoxicity in the staple crop rice. In the present study, ThioAC, the co-application of thiourea (TU, a non-physiological redox regulator) and N. lucentensis (Act, an As-detoxifying actinobacteria), was evaluated as a low-cost approach for alleviating As(III) toxicity in rice. To this end, we phenotyped rice seedlings subjected to 400 mg kg-1 As(III) with/without TU, Act or ThioAC and analyzed their redox status. Under As-stress conditions, ThioAC treatment stabilized photosynthetic performance, as indicated by 78 % higher total chlorophyll accumulation and 81 % higher leaf biomass, compared with those of As-stressed plants. Further, ThioAC improved root lignin levels (2.08-fold) by activating the key enzymes of lignin biosynthesis under As-stress. The extent of reduction in total As under ThioAC (36 %) was significantly higher than TU (26 %) and Act (12 %), compared to those of As-alone treatment, indicating their synergistic interaction. The supplementation of TU and Act activated enzymatic and non-enzymatic antioxidant systems, respectively, with a preference for young (TU) and old (Act) leaves. Additionally, ThioAC activated enzymatic antioxidants, specifically GR (∼3-fold), in a leaf-age specific manner and suppressed ROS-producing enzymes to near-control levels. This coincided with 2-fold higher induction of polyphenols and metallothionins in ThioAC-supplemented plants, resulting in improved antioxidant defence against As-stress. Thus, our findings highlighted ThioAC application as a robust, cost-effective ameliorative strategy, for achieving As-stress mitigation in a sustainable manner.


Asunto(s)
Arsénico , Oryza , Antioxidantes/metabolismo , Arsénico/toxicidad , Arsénico/metabolismo , Oryza/metabolismo , Lignina/metabolismo , Tiourea/metabolismo , Tiourea/farmacología , Estrés Oxidativo , Plantas/metabolismo , Plantones/metabolismo
14.
Int J Biol Macromol ; 235: 123806, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36841386

RESUMEN

Arbuscular mycorrhizae fungi (AMF) symbiosis is an indispensable approach in sustainable agriculture. AMF-plant association is likely to be enhanced by the nanoparticle's application. Herein, the impact of chitosan nanoparticles (CSNPs) on the mycorrhizal colonization in wheat has been investigated. The provoked changes in wheat growth, physiology and metabolism were assessed. CSNPs treatment improved AMF colonization (52 %) by inducing the levels of auxins and strigolactones in roots by 32 and 21 %, respectively besides flavonoids exudation into the rhizosphere (9 %). Such supporting action of CSNPs was associated with improved plant biomass production (21 %) compared to AMF treatment. Both treatments synergistically enhanced the photochemical efficiency of photosystem II and stomatal conductance, therefore the photosynthetic rate was increased. The combined application of CSNPs and AMF enhanced accumulation of glucose, fructose, sucrose, and starch (12, 22, 31 and 13 %, respectively), as well as the activities of sucrose-p-synthase, invertases and starch synthase compared to AMF treatment. The synchronous application of CSNPs and AMF promoted the levels of polyphenols, carotenoids, and tocopherols therefore, improved antioxidant capacity (33 %), in the roots. CSNPs can be applied as an efficient biofertilization strategies to enhance plant growth and fitness, beside improvement of health promoting compounds in wheat.


Asunto(s)
Quitosano , Micorrizas , Micorrizas/metabolismo , Triticum/fisiología , Quitosano/farmacología , Quitosano/metabolismo , Hongos , Raíces de Plantas , Sacarosa/metabolismo , Azúcares/metabolismo
15.
Molecules ; 27(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36500402

RESUMEN

In this work, ZnO, CrZnO, RuZnO, and BaZnO nanomaterials were synthesized and characterized in order to study their antibacterial activity. The agar well diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays were used to determine the antibacterial activity of the fabricated nanomaterials against Staphylococcus aureus ATCC 29213, Escherichia coli ATCC35218, Klebsiella pneumoniae ATCC 7000603, and Pseudomonas aeruginosa ATCC 278533. The well-diffusion test revealed significant antibacterial activity against all investigated bacteria when compared to vancomycin at a concentration of 1 mg/mL. The most susceptible bacteria to BaZnO, RuZnO, and CrZnO were Staphylococcus aureus (15.5 ± 0.5 mm), Pseudomonas aeruginosa (19.2 ± 0.5 mm), and Pseudomonas aeruginosa (19.7 ± 0.5), respectively. The MIC values indicated that they were in the range of 0.02 to 0.2 mg/mL. The MBC values showed that the tested bacteria's growth could be inhibited at concentrations ranging from 0.2 to 2.0 mg/mL. According to the MBC/MIC ratio, BaZnO, RuZnO, and CrZnO exhibit bacteriostatic effects and may target bacterial protein synthesis based on the results of the tolerance test. This study shows the efficacy of the above-mentioned nanoparticles on bacterial growth. Further biotechnological and toxicological studies on the nanoparticles fabricated here are recommended to benefit from these findings.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Klebsiella pneumoniae , Antibacterianos/farmacología , Escherichia coli , Bacterias
16.
Molecules ; 27(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36432115

RESUMEN

An in silico approach applying computer-simulated models helps enhance biomedicines by sightseeing the pharmacology of potential therapeutics. Currently, an in silico study combined with in vitro assays investigated the antimicrobial ability of Limoniastrum monopetalum and silver nanoparticles (AgNPs) fabricated by its aid. AgNPs mediated by L. monopetalum were characterized using FTIR, TEM, SEM, and DLS. L. monopetalum metabolites were detected by QTOF-LCMS and assessed using an in silico study for pharmacological properties. The antibacterial ability of an L. monopetalum extract and AgNPs was investigated. PASS Online predictions and the swissADME web server were used for antibacterial activity and potential molecular target metabolites, respectively. Spherical AgNPs with a 68.79 nm average size diameter were obtained. Twelve biomolecules (ferulic acid, trihydroxy-octadecenoic acid, catechin, pinoresinol, gallic acid, myricetin, 6-hydroxyluteolin, 6,7-dihydroxy-5-methoxy 7-O-ß-d-glucopyranoside, methyl gallate, isorhamnetin, chlorogenic acid, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-3-yl 6-O-(6-deoxy-ß-l-mannopyranosyl)-ß-d-glucopyranoside) were identified. The L. monopetalum extract and AgNPs displayed antibacterial effects. The computational study suggested that L. Monopetalum metabolites could hold promising antibacterial activity with minimal toxicity and an acceptable pharmaceutical profile. The in silico approach indicated that metabolites 8 and 12 have the highest antibacterial activity, and swissADME web server results suggested the CA II enzyme as a potential molecular target for both metabolites. Novel therapeutic agents could be discovered using in silico molecular target prediction combined with in vitro studies. Among L. Monopetalum metabolites, metabolite 12 could serve as a starting point for potential antibacterial treatment for several human bacterial infections.


Asunto(s)
Nanopartículas del Metal , Plumbaginaceae , Humanos , Plata/farmacología , Antibacterianos/farmacología , Extractos Vegetales/farmacología
17.
Chemosphere ; 307(Pt 3): 135880, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35964713

RESUMEN

Chromium (Cr) contamination reduces crop productivity worldwide. On the other hand, the expected increase in the future CO2 levels (eCO2) would improve plant growth under diverse growth conditions. However, the synergetic effect of eCO2 has not been investigated at both physiological and biochemical levels in Cr-contaminated soil. This study aims to analyze the mitigating effect of eCO2 on Cr VI phytotoxicity in two rice cultivars (Giza 181 and Sakha 106). Plants are exposed to different Cr concentrations (0, 200 and 400 mg Cr/kg Soil) at ambient (aCO2) and eCO2 (410 and 620 ppm, respectively). Unlike the stress parameters (MDA, H2O2 and protein oxidation), growth and photosynthetic reactions significantly dropped with increasing Cr concentration. However, in eCO2 conditions, plants were able to mitigate the Cr stress by inducing antioxidants as well as higher concentrations of phytochelatins to detoxify Cr. Notably, the expression levels of the genes involved in mineral nutrition i.e., OsNRAMP1, OsRT1, OsHMA3, OsLCT1 and iron chelate reductase were upregulated in Cr-stressed Giza 181 plants grown under eCO2. Mainly in Sakha 106, eCO2 induced ascorbate-glutathione (ASC/GSH)-mediated antioxidative defense system. The present study brings the first ever comprehensive assessment of how future eCO2 differentially mitigated Cr toxicity in rice.


Asunto(s)
Oryza , Antioxidantes/metabolismo , Dióxido de Carbono/farmacología , Cromo/metabolismo , Glutatión/metabolismo , Homeostasis , Peróxido de Hidrógeno/farmacología , Quelantes del Hierro/farmacología , Minerales/farmacología , Oryza/metabolismo , Oxidación-Reducción , Fitoquelatinas/metabolismo , Suelo
18.
Int J Nanomedicine ; 17: 2843-2863, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795079

RESUMEN

Introduction and Objectives: Biogenic agents in nanoparticles fabrication are gaining great interest due to their lower possible negative environmental impacts. The present study aimed to isolate fungal strains from deserts in Saudi Arabia and assess their ability in silver nanoparticles (AgNPs) fabrication and evaluate their antibacterial effect. Methods: Soil fungi were identified using 18s rDNA, and their ability in NPs fabrication was assessed as extracellular synthesis, then UV-vis spectroscopy, dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy, and transmission electron microscopy were used for AgNPs characterization. The antibacterial activity of fungal-based NPs was assessed against one Gram-positive methicillin-resistant S. aureus (MRSA) and three Gram-negative bacteria (E. coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae). Ultrastructural changes caused by fungal-based NPs on K. pneumoniae were investigated using TEM along with SDS-PAGE for protein profile patterns. Results: The three fungal isolates were identified as Phoma sp. (MN995524), Chaetomium globosum (MN995493), and Chaetomium sp. (MN995550), and their filtrate reduced Ag ions into spherical P-AgNPs, G-AgNPs, and C-AgNPs, respectively. DLS data showed an average size between 12.26 and 70.24 nm, where EDX spectrums represent Ag at 3.0 keV peak. G-AgNPs displayed strong antibacterial activities against Klebsiella pneumoniae, and the ultrastructural changes caused by NPs were noted. Additionally, SDS-PAGE analysis of treated K. pneumoniae revealed fewer bands compared to control, which could be related to protein degradation. Conclusion: Present findings have consequently developed an eco-friendly approach in NPs formation by environmentally isolated fungal strains to yield NPs as antibacterial agents.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Escherichia coli/metabolismo , Klebsiella pneumoniae , Nanopartículas del Metal/química , Plata/química , Suelo
19.
Saudi J Biol Sci ; 29(5): 3749-3758, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35844383

RESUMEN

Wadi Namar lake is a new touristic attraction area in the south of Riyadh. Human activities around the lake may lead to changes in water quality with subsequent changes in microenvironment components including microbial diversity. The current study was designed to assess possible changes in bacterial communities of the water at Wadi Namar Lake. Therefore, water samples were collected from three different locations along the lake: L1 (no human activities, no plants), L2 (no human activity, some plants) and L3 (human activities, municipal wastes and some plants). The total DNA of the samples was extracted and subjected to 16S rDNA sequencing and metagenomic analysis; water pH, electrical conductivity (EC), total dissolved solids (TDS) as well as the concentration of Na+1, K+1, Cl-1 and total N were analysed. Metagenomic analysis showed variations in relative abundance of 17 phyla, 31 families, 43 genera and 19 species of bacteria between the locations. Proteobacteria was the most abundant phylum in all locations; however, its highest abundance was in L1. Planctomycete phylum was highly abundant in L1 and L3, while its abundance in L2 was low. The phyla Acidobacteria, Candidatus Saccharibacteria, Nitrospirae and Chloroflexi were associated with high TDS, EC, K+1 and Cl-1 concentrations in L3; various human activities around this location had possibly affected microbial diversity. Current study results help in recognising the structure of bacterial communities at Wadi Namar Lake in relation to their surroundings for planning to environment protection and future restoration of affected ecosystems.

20.
Front Oral Health ; 3: 950840, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35833191

RESUMEN

The aim was to compare the in-vitro antibacterial effectiveness of two herbal extracts (a) Saussurea-costus (S. costus) and (b) Melaleuca-alternifolia (M. alternifolia) against Porphyromonas gingivalis (P. gingivalis), Streptococcus mutans (S. mutans) and Enterococcus faecalis (E. faecalis). Aqueous extracts from M. alternifolia were prepared by adding 2 grams of S. costus and M. alternifolia, respectively to 100 ml distilled water. Bacterial strains of P. gingivalis, E. faecalis and S. mutans were treated into 3 groups. In groups 1 and 2, bacterial strains were treated with aqueous extracts of S. costus and M. alternifolia, respectively. In the control-group, bacterial strains were exposed to distilled water. Antibacterial activity of the samples and nanoparticles was determined. The minimum-inhibitory-concentration (MIC) values were determined using the microdilution method. P < 0.01 was considered statistically significant. The MIC for all bacterial strains treated with S. costus was significantly higher than that of M. alternifolia (P < 0.001). There was no significant difference in MIC for strains of P. gingivalis, E. faecalis and S. mutans treated with S. costus. For bacterial strains treated with M. alternifolia, the MIC was significantly higher for P. gingivalis compared with E. faecalis and S. mutans strains (P < 0.01). There was no difference in MIC for E. faecalis and S. mutans strains treated with M. alternifolia. The in-vitro antibacterial efficacy of M. alternifolia is higher than S. costus against P. gingivalis, E. faecalis and S. mutans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...